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DETERMINATION OF THE ELLIPTICITY OF THE EARTH'S
EQUATOR FROM OBSERVATIONS ON THE DRIFT

OF THE SYNCOM Il SATELLITE

by
Carl A. Wagner
Goddayrd Space Flight Center

SUMMARY 2% 7 /7/
An original, simple theory is presented for the radial and longitudinal drift
regime, in a triaxial earth-gravity field, of an inclined 24-hour satellite with a
near-circular orbit. The drift regime equations for an equatorial satellite (derived
by more complex perturbation methods) have been known for at least 2 years. This
new theory shows that the "inclined orbit" regime is the same as the equatorial,
modified only by an "inclination factor."

The theory is closely validated by two numerically integrated particle drifts of
about 3 months duration each, starting with the elements of Syncom II for epochs
26.709 August 1963 and 10.000 December 1963. The particle program included best
estimates of sun and moon gravity, longitude-independent (zonal) earth gravity
through fourth order, as well as triaxial earth gravity (associated with equatorial
ellipticity).

On the basis of this validation, the actual drift of Syncom I over Brazil, as
derived at Goddard Space Flight Center from range and range-rate radar and Mini-
track observations coveringa 7-month period in 1963-1964, is reduced by the theory
to yield the following two parameters of the earth's equatorial ellipticity:

J,, = - (1.70£0.05) x 107%,

(representing a 65 + 2 meter difference between major and minor equatorial radii);
and

Agg = - (19£6)°

(locating the geographic longitude of the major equatorial axis). These results show
a somewhat stronger and west-shifted equatorial ellipticity than recent geodetic

investigations in 1963-1964 indicate.
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DETERMINATION OF THE ELLIPTICITY OF THE EARTH'S
EQUATOR FROM OBSERVATIONS ON THE DRIFT
OF THE SYNCOM Il SATELLITE

by
Carl A. Wagner
Goddard Space Flight Center

INTRODUCTION

Almost as soon as Syncom I, the world's first operational 24-hour satellite, was left alone to
drift free in the gravity fields of the earth, sun, and moon high above the earth, it began to deviate
noticeably from the predicted path. The principal observed effect, unexplained in the orbit-
determination theory used for this satellite (which included all well-known solar, lunar, and earth-
gravity effects), was a small but continual daily change of the semimajor axis. As a result of this
secular drift anomaly, the elements for Syncom II (1963 31A) have undergone revision about every
week since mid-summer 1963, to allow adequate tracking acquisition for the succeeding week.

The investigation reported herein was undertaken primarily as an attempt to explain as fully
as possible the reasons for, and all the observed features of, this secular drift. Many possible
causes were examined for order-of- magnitude effect and were rejected; these included magnetic
field interactions, micrometeorite collision drag, and solar wind and radiation perturbations.*
Outgassing from the satellite during the free drift periods starting in mid-August 1963 is believed
to have been negligible. To have contributed to the observed steady secular increase of the semi-
major axis, residual outgassing from the spin-stabilized satellite would have had to occur reg-
ularly at selective times in the rotation cycle—a highly unlikely series of events over many months
of drift.

It was concluded that longitude-dependent earth gravity was the most likely cause of the long-
term accelerated free drift of Syncom II. Significant longitude-dependent earth gravity will cause
detectable perturbations of satellite orbits which can be appreciable over fairly short periods of
time in special "Resonance" cases such as the 24-hour satellite (see Reference 1, for example).

¥Sce Appendix F in Goddard Space Flight Center Document X-621-64-90, April 1964, by C. A. Wagner: “Determination of the Triaxiality
of the Earth from Observations on the Drift of the Syncom II Satellite.”




Summary of Previous Longitude-Dependent Earth-Gravity Investigations

The question of the existence and extent of the longitude dependence of the earth's gravity
field has concerned geodesists since the early years of this century (see Reference 2, for example).
The existence of a longitude-dependent field implies the existence of inhomogeneities and states
of stress within the earth which are of fundamental importance to all dynamical theories of the
earth's interior.

Table Al, Appendix A, summarizes 40 previous reductions of gravimetric, astrogeodetic, and
satellite gravity data reporting longitude terms in the earth's external gravity field. It is quickly
seen that, even though the more recent gravity reductions show closer agreement in term-by-
term detail than the older ones, exact knowledge of tesseral earth gravity is still in its infancy—
basically, because of the scarcity of good data over more than a small portion of the external
field. Surface gravity data, prior to the recent use of accurate sea-going gravimeters, have been
very scattered and often of dubious quality. Uncertainties in surface-station position with respect
to the center of the earth's mass of the order of only 10 meters can cause serious errors in tes-
seral gravity reductions, since this is the order of magnitude of the geoid deviations caused by
longitude-dependent gravity. In addition, scattered surface gravity data, unless smoothed with
great care, tend to overemphasize the higher order tesseral terms of greater spatial frequency,
because the gravimeter will be sensitive to the gravity distortion of even close-by mass anomalies.
Satellite gravity reductions, inherently more insensitive to the higher order terms, have suffered
most to date from being based on too limited a number of medium-altitude medium-inclination
satellites. The chief result of this poor field sampling has been to make it difficult to separate the
effects of individual tesseral terms of the same spatial frequency.

The situation does not seem as bad when the constants of the most recent tesseral gravity
reductions are taken as a set and displayed cumulatively as deviations from a mean earth geoid
(Appendix A, Figures A2 to A8). Still, as late as July 1963, Izsak stated (Reference 3), "It might
be some time before one can arrive at definite conclusions regarding the longitude dependence of
the earth's gravity field.”

The use of 24-hour near-circular orbit satellites for geodetic purposes (as revealed in this
investigation) has certain obvious advantages over lower altitude and surface data reductions. For
the near-stationary satellite, any small-latitude symmetric earth-gravity anomaly in longitude
will, in time, cause significant longitude drift of the ground track configuration which can be
evaluated to high precision after a long period of observation. The great height of the 24-hour
satellite makes it sensitive only to the very lowest orders of gravity anomalies, thus making it
easier to separate out the effects of individual tesseral terms in the total field (see Appendix A,
Figure Al for example).

On the other hand, the great altitude of the 24-hour satellite has its drawbacks. The longitude
perturbations to be sensed are extremely small at 24-hour altitudes: of the order of 107 of the
earth's principal gravity attraction. The observation time for an accurate determination of this
perturbation field must be long. Furthermore, the effect on the distant satellite of sun and moon
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gravity over these long observation times cannot always be safely ignored, as it generally can for
reductions from lower altitude satellite data.

In summary, it may be said that all earth satellites orbiting well above the atmosphere and
below a level where sun and moon perturbations become too severe can be potentially useful in
helping to clarify knowledge of the earth's actual gravity field. Twenty-four hour satellites appear
ideally suited to defining individual components of this field to at least third order.

Purpose of Study

The author is not aware of an adequate presentation in the literature of the drift theory for an
inclined 24-hour orbit satellite (such as Syncom II) in a longitude-dependent earth gravity field.

The purpose of this report, then, is threefold:

1. To present a theory for the drift of a 24-hour inclined satellite in a longitude-dependent
earth-gravity field;
2. To interpret the actual drift of Syncom II (as assessed by a set of revised elements for the

satellite) on the basis of this theory, thereby deriving measures of the longitude-dependent
gravity field (i.e., shape of the geoid) which is assumed to be responsible for the observed

drift;
3. To calculate maximum on-board station-keeping propulsion requirements for future 24-
hour satellites based on the drift acceleration experience of Syncom II.

The measures of the earth's shape (geoid) derived in this report represent the first use of a
24-hour satellite for this purpose.

BASIC THEORY OF THE REDUCTION: ORBIT-AVERAGED DRIFT OF A 24-HOUR SATELLITE

(Determination of the Longitude Drift and Orbit Expansion for a 24-Hour Satellite in a Near-
Circular Inclined Orbit Affected by a Small but Persistent Tangential Perturbing Force)

The dominant perturbations of a 24-hour equatorial satellite in a higher order earth-gravity
field have been derived many times in the literature (Referencesl,4,and5).* In these references
the perturbations were found by directly linearizing the equations of motion themselves and dis-
playing the perturbed motion in appropriate geographic coordinates; no attempt was made to treat
the drift of the inclined 24-hour satellite.

This report departs from the rather involved and difficult-to-~visualize procedure of lineari-
zation of the equations of motion. Instead, it is shown how simply the dominant drift and orbit

*Also: Barrett, C. C., “The Perturbations of a Synchronous Satellite Resulting from the Gravitational Field of a Triaxial Earth,” GSFC

Document X-623-62-160, September 1962.
And: Private communication from R. H. Frick and T. B. Garber, 1962 (Rand Corp. Memo RM-2296).




- ]

expansion equations for the 24-hour satellite can be found by calculating the "perturbation of the
two-body energy' of the geographically stationary satellite due to the small but persistent longitude- |
dependent earth-gravity force. This paper will not discuss in detail the limits of validity of the
expressions derived, except in the case of the "inclination factor," which is discussed in Appendix
B. To assess the accuracy with which these expressions predict the satellite's behavior, simu-
lated trajectories with typical Syncom II orbit elements have been run on Goddard's particle pro-
gram ITEM (Interplanetary Trajectory by an Encke Method). These trajectories (Appendix C)
confirm the validity of the derived drift equations to an accuracy well within the '"noise levels" in
the orbital elements reported for Syncom II (Appendix D). The equations are essentially the same
as those which Dr. Musen has derived (though not explicitly) by a more general but complex
"energy perturbation" method (Reference 6).

In Figure 1, F is a small earth-gravity perturbation force acting tangentially to an initial cir-
cular 24-hour satellite orbit and ds is a small arc length of the satellite's path around the earth.*
At the beginning of the dynamics, the total energy (the sum of potential and kinetic) of the satellite
in a spherical earth-gravity field (Reference 7) is

—_— /LLE
E = -5 (1)

where .; is the earth's gaussian gravity constant (3.986 X 105 km3/sec?). The energy added to the
satellite by F per day is

<7 (2)

PROGRESSION OF  where F = (1/2r)9 Fdo. In units of force per
\/24-HOUR SATELLITE  unit mass, F is the orbit-averaged energy per-
IN ITS ORBIT . - :
turbing force. If the orbit is purely circular,
only a tangential perturbation force can cause a
F AT 6 FROM ITS : i
ASCENDING change in the total energy. The ITEM simu
NODE lated trajectories in Appendix C and the real
Syncom II orbits both maintain eccentricities of
the order of 0.0001 for periods up to 100 days.
Equation 2 assumes that the eccentricity is zero
for the 24-hour satellite of semimajor axis a,.

EARTH'S
ROTATION
RATE AND
DIRECTION

S
s 24 - HOUR
TSN SATELLITE

Figure 1—Orbit plane of a 24-hour satellite,
looking southerly.

*Symbols used in this report are defined in Appendix F.

From Equation 1, the change in energy of a \

24-hour satellite is accompanied by a change in
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semimajor axis expressed by

AE = 'U’EAas
2(a,)?
or
2(a, 2AE
n, - 22 @®)

Substituting Equation 2 into 3, the change in semimajor axis of the 24-hour near-circular orbit,
per day, is approximately given by

ha, = : @)

From Kepler's third law, the period of a 24-hour orbit as a function of its semimajor axis is
27 (a )2
RN PSEC (5)
Thus, if the semimajor axis changes by 2a_, the period change is given by
37 (a,) 1/2Aa
aT, = W : (6)
Substituting Equation 4 into 6, the change in period, per day, of a 24-hour circular orbit is given by
1272 (a, )7 F

A’l‘s :——m)yz—- (7)

The apparent net longitudinal drift rate of the 24-hour satellite's ground track with respect to the
surface of the earth (see Figure 3) after the first sidereal day is

. (o1,) 20 :
At = 1 sid. day) = - — rad/sid. day.* (8)

The minus sign is taken in Equation 8 because a gain in period is accompanied by a decrease in
net geographic longitude for the initially 24-hour satellite (for example, for the daily geographic

*See Isley, W. C., A summary of Constants Associated with Orbital Analysis of Earth Satellites, Including the Influence of their Un-
certainties upon Gravitational Measurements for Synchronous Satellities,” GSFC Document X-623-62-169, 1962.




position of the ascending equator crossing). Combining Equations 7 and 5 in 8 gives

. 1272 F
At = 1 sid. day) = - 77—F2 rad/sid. day. (9)
ke /o)

As the gain in semimajor axis is small over one day (and, in fact, small compared with a_ for
the entire libration period of the satellite in the triaxial earth field), the drift rate will continue to
build up linearly with time initially, adding increments of Equation 9 each day. Thus, the net longi-
tudinal drift acceleration of an initially 24-hour satellite is

- 12 F assid. day?
= - ———— rad/sid. day“ .
P K (10)

For the equatorial synchronous satellite, F is a constant at every point in the orbit equal to
the longitude perturbation force at that equatorial position. For this satellite, the drift accelera-
tion as a function of A (in a second-order gravity field) is simply given from Equation 10 as

A= Ay sin2 (A -Xy,) rad/sid. day?, (10a)
where

A22 (equatorial) = - 72772,]22 (Ro/&as)2 rad/sid. day?. (10b)

(See next section and Appendix A, Equation A4.) Equation 10a has been derived by a more complex
perturbation method.* Rewriting Equation 4 as

a = ————— length units/sid. day (11)

gives the expansion rate of the initially 24-hour near-circular satellite orbit due to a small but
persistently acting orbit-averaged tangential perturbing force F.

EVALUATION OF ORBIT-AVERAGED PERTURBING FORCE FOR AN
INCLINED-ORBIT 24-HOUR SATELLITE

While the energy-changing force on the stationary equatorial satellite is constant over a
single orbit, this is no longer true for the inclined 24-hour satellite. Such a circular orbit satel-
lite describes a closed, narrow "figure 8" path over the earth's surface, centered on the equator
(see Figure 3).

*Frick and Gatber, op. cit. (See footnote, p. 3).
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At each point on this path the tangential, energy-changing force is different, as both the longitude
and latitude change during the daily excursion. This along-track force is now made up of contri-
butions from both latitude and longitude gravity perturbation forces (Appendix A). It can be shown
that the zonal gravity forces have no net daily energy effect on the circular inclined orbit. The
net daily contributions from the latitude and longitude perturbation forces due to the earth's pre-
sumed elliptical equator are not zero. It turns out that the net contribution from the longitude
perturbation dominates for orbits of small and medium inclination.

Figure 2 shows the position of the 24-hour satellite with respect to the earth and the celestial
sphere. The earth-gravity perturbing forces in the radial, latitude, and longitude directions, F,,
F,, and F,, are assumed to be acting on the satellite at s.

PROJECTION OF ORBIT PLANE
OF SYNCOM II ON CELESTIAL
SPHERE

GREENWICH MERIDAN
AT TIME t

GREENWICH MERIDIAN

AT TIME ZERO F=Fy *Fa

( VERNAL

EQUINOX)
GREAT CIRCLE OF

ACTION OF Fy

CELESTIAL EQUATOR

DIRECTION OF EARTH EQUATOR'S
MAJOR AXIS

Figure 2—Position of a 24-hour satellite with a near-circular orbit with respect
to the earth and the celestial sphere.

If only the earth-gravity perturbation forces arising from the ellipticity of the earth's equator are
considered,* Appendix A gives these forces as

Hg R!)/as)2
F = __(— [9_]22 cosz¢C°S2(>\‘)‘22)] ’ (12)

' (=) ?

*Wagner, C. A., *The Gravitational Potential of a Triaxial Earth,” GSFC Document X-623-62-206, October 1962.




_ e (Rya)? .
F¢ = '—‘(‘Z)—z—' [6]22 cos¢sxn¢cos2(}\—>\22)] ' (1221)

#g (Rosas)? .
Fr o ® __(as)—z)_ [6J22 °°S¢Sm2(}\_>\“):| . (13)

As long as the orbit is nearly circular, F_ will have negligible contribution to F. The contribution
to F from F, is

F(¢) = Fycosa = Ksind)cosdJcosacosZ()x—An) ; (14)

K is a constant for a single orbit:

#g Ry
K = 6]22—(—3T . (14a)

In the right spherical triangle AN, S,L note the following trigonometric relations:

. tan AL
cosi = Tand (15a)

_ tang
cosa = Fang ' (15b)
sin¢ = sinisiné , (15¢)
sina = g% . (15d)

From Equation 15a,

AL = tan"!(tanfcosi) . (16)

Let the geographic longitude of the satellite at the ascending node AN be »,. If time is counted
from this orbital position, the geographic longitude of the 24-hour satellite at s in its near-
circular orbit is

A= ox, + AL - w t (Figure 2) ;

or, using Equation 16,

A= Ao * tan'! (tanfcos i) - w, t (17)
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(v, is the earth's sidereal rotation rate). For the 24-hour satellite [starting the dynamics with S
at AN (ascending node) for convenience], 6 * w_t, so that Equation 17 becomes

A= ng tan ! (tanfcos i) - 4 , (18)
approximately. The function tan !(tan6fcosi)- 6 is "even" about 6 = 0 and 6 = =/2, with a
period of 7, and behaves like a somewhat distorted sine function (Figure 3 and Appendix B). Call
this function A\ and note that, for i < 33 degrees, A\ is always less than 5 degrees. Thus, using
Equation 18 and assuming i is sufficiently small (i < 45 degrees proves to be a sufficient restric-
tion on the inclination), cos 2 (A - \,,) for the 24-hour satellite can be approximated by

cos 2 ()x - A) : cos2 (Mo -Xy,) — 2DAsin2 (Ao - >‘22) = - cos 2y, + 2Msin2y, . (18a)

(Note that ¥, = 90°+\ -\,, from Figure 3.) Similarly, sin 2 (A -1,,) can be approximated by

sin2(>\0 —)\22) + 20\ cos 2 (Ko-)‘zz) = - sinl2y, - 2B\ cos 2y, z sin2(>\—>\22) ) (18b)

In Equations 18a and 18b, v, is the geographic longitude of the node of the 24-hour near-
circular satellite orbit with respect to the minor equatorial axis (Figure 3). With these expansions
(Equations 18a and 18b), and using 15b, Equation 14 becomes

- g Sinécosgtang .
F K sin¢cos ¢ tan (~ cos 2y, + 20X\ sin 270) .

@) tan 6

Using Equation 15c¢ in the above expression, the contribution to the perturbing force F due to F,
becomes

sin? i sin 28
F = K—=—— — (- cos 2y, BA rmax

@
t NORTH PROGRESSION OF
. SUBSATELLITE
+ 2
2Mnsin2yy) - (19) LONGITUDE OF / POINT AWAY FROM

i . . =i ASCENDING NODE FOR

Writing A\ = M sin 25, Equation 19 becomes MAJOR AXIS Pmax=4 A 24-HOUR SATELLITE
i Y
. L. sin 260 GREENWICH ° S ININSTANTANEOUS
Fg - Ksin?i (- cos 2y,) T3 LONGITUDE SUBSATELLITE
ST—90°— POSITION
—p— \
L, . . A EAST EQUATOR
- KsinZit __ (s1n 2y, sin? 29) . (20) ° / —
A
Averaging F, over 0<6 < 27, Equation 20 gives LONGITUDE OF
EQUATORIAL
MINOR AXIS
1 27' Sinz iA)\max .
Fo, = 2n| Fe d6 = - 2 (K sin 2y,) "(21) Figure 3—Geographic subsatellite track of a 24-hour
o satellite in a near-circular orbit.




The contribution to F from F, is
Fo‘) = F)‘ cos (0°-a) = FA sina = K sinacos¢ (— sin 270 - 2A\ cos 2'y0) s (22)

from Equations 13 and 18b. Using Equation 15d in 22 and noting that A\ = - A\ _ sin26, as before,
gives the contribution to F from F, as

FO\) = Kcosi [— sin 2y, + 20\ sin 26 cos 270] . (23)
Averaging F ,, over 0< 6 < 27, Equation 23 gives
F(/\) = - Kcosisin2y, . (24)

Thus, combining the contributions of the latitude and longitude perturbations to the average
perturbation force over a single 24-hour orbit, Equations 21 and 24 sum to produce

sin? i Axm] (25)

totat - F@tFa = -~ Ksin2y, [Cos it |-

COMPLETION OF DERIVATION OF DRIFT EQUATIONS FOR A 24-HOUR SATELLITE

Appendix B shows that
JAVY = tan !(sec i) - 45 degrees .

max

It is also shown there that, to a high degree of accuracy for i < 50 degrees,

{02
~ sin AN . 1+ cos
cosi + ) = 5

2i

Numerically integrated orbits have shown that the drift theory for a 24-hour satellite stemming
from Equation 25 is in error by more than 2 percent for i > 45 degrees. With this restriction in
orbit inclination, using the above approximation for the inclination factor, we can rewrite the
longitude drift and orbit expansion equations (10 and 11), evaluating F by Equation 25, giving

.o o 1272 K cos?i+1) | ’ &/sid. day?
Y% #E/(as)z 2 sin 2y, rad/sid. day (26)

(where 7, refers to the net acceleration of the initial ascending equator crossing longitude 7,) and

4 (a,)°K 2i+1
a = - #:: (COS 5 )sin 2y, length units/sid. day . 27)

10
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Substituting Equation 14a into 26 and 27 reduces these expressions to

. cos?i +1
Y% = 12723, (Ro/és) 2 (*T) sin 2y, rad'sid. day?

and

i +1

. cos?
a = - 2477_]’22 (Ro/és) Ro(“‘—“‘z—‘ sin2’yo length units/sid. day .

Define a nondimensional change of semimajor axis from a during the drift as

a, = a —-a-:,sothatal—a—

With Equation 29a, Equation 29 becomes

. 2i+1
a; = - 247J, (Ro/{"‘s)2 [S!DSZ—X_:ISin 27, , 1/sid. day .
Define
cos?i+1
A, = -7227,, (Ro/as)2 [—2—:) rad/sid. day? .
With Equation 30a, Equations 28 and 30 become
Y% * Ay sin2y, = 0 rad/sid. day?

and

. A, sin2y,
a - 3

0, 1/sid. day .

(28)

(29)

(29a)

(30)

(30a)

(31)

(32)

The long-term drift regime for the 24-hour inclined-orbit satellite (as described by Equations
31, 32, and 30a) is thus the same as for the equatorial satellite* modified only by the inclination

factor (c052 i+ 1)/2

Note that » in Equation 32 has dimensions of radians per sidereal day. It must be understood
that Equation 31 describes the »ef daily geographic acceleration of the initially 24-hour satellite
with respect to the earth's minor equatorial axis. Stated another way, Equation 31 describes the
geographic drift of the entire originally stationary, figure-8 ground track (Figure 3). Similarly,

*See: Frick and Garber, op. cit. and Barrett, op. cit. (footnote, p. 3).

11
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Equation 32 describes the net daily orbit-expansion rate of the 24-hour satellite. In particular, it
is convenient to treat the motion of the ascending node of the orbit in geographic longitude as a
reference for the entire configuration. In what follows, therefore, v will refer always to the geo-
graphic longitude of the ascending equator crossing east of the equatorial minor axis and v, will
refer to the initial geographic longitude of the ascending equator crossing east of the minor axis, at
the start of the dynamics under consideration. Equations 31 and 32 can thus be rewritten in terms
of the general ascending equator crossing longitude position v, to give the relevant partially un-
coupled long-term drift and orbit-expansion differential equations for the near-24-hour near-
circular orbit satellite:

¥ + A, sin2y = 0 rad/sid. day? (33)
and
) A,, sin2y
a, -~ 3, — = 0, 1/sid. day (34)
GENERAL CONSIDERATIONS OF SOLUTIONS OF DRIFT EQUATIONS: LIBRATORY
DRIFT REGIME OF AN INCLINED-ORBIT 24-HOUR SATELLITE
Equation 33 can be integrated directly for the geographic drift rate by noting that
oo dy o dy?_ dy?
Y T a T 2ydt - 2dy °
Thus, Equation 33 can be separated to
dy? = - 2A, sin 2ydy . (35)
Since the variables %2 and y are separated in Equation 35, this equation integrates to
¥? A,cos2y +C, . (36)
With the initial condition that v = y, aty = v, , Equation 36 becomes
v = [(5/0)2 +A,, (cos 2y - cos 2y, )]1/2 , (37)

giving the drift rate of the 24-hour satellite as a function of the initial drift rate y , the earth-
gravity constant A, ,, the initial longitude east of the minor axis y,, and the instantaneous longi-
tude y. Returning to the semicoupled system of Equations 33 and 34, the explicit dependence of

the equations on the location from the minor axis and the magnitude of the equatorial ellipticity

may be eliminated by multiplying Equation 33 by 1/3» and adding the resulting equation to 34, giving

¥+ 3ma, = 0. (38)

12
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Equation 38 can be rewritten as
%%**37751 = 0 = dy +37a;dt = dy + 3nda, . (39)
Separation of the variables 7 and a, is thus achieved in Equation 39, which integrates directly to
3ma, +7 = G, . (40)
With the initial conditions, a, = 0 when 7 = 0 (or the satellite is in the momentarily station-
ary ground-track configuration), the integration constant C, is evaluated as 0. If 7, in Equation 37

is also the longitude of this' initially stationary orbit, (&0 )2 = 0 there, and Equation 37 in 40 yields
for a,, the semimajor axis change from "synchronism" in the drift motion,

A, )Y2 (cos 2y - cos 2y, )1/?
0y - o ) (conmcon )T 1)

Equation 41 shows explicitly that the semimajor axis is bounded in long-term drift from a station-
ary orbit. From Equation 33, since A,, >0, if 0< y, <90 degrees, drift proceeds foward the near-
est longitude of the earth's equatorial minor axis (in the - direction). If -90 degrees <y, < 0 degrees,
then 33 shows that drift again proceeds foward the nearest minor axislongitude (in the + y direction).
Thus, in all cases of drift from a stationary geographic configuration, cos 2y - cos 2y, is a positive
function which has a maximum when y = 0 (when the satellite has drifted over the longitude of the
minor axis). Thus Equation 41 gives (for the librations of a 24-hour satellite)

oy - !(Azz)m (1 '3:’5 2“/0)1/2% ) (42)

Again, it is noted that » in Equation 42 has units of radians per sidereal day. An absolute maxi-
mum semimajor axis change in the drift occurs when the "synchronous' condition is established

near the longitude of the major equatorial axis. Here, y, = -90 degrees, cos 2y, = -1, and
(2422)1/2
a, (absolute maximum for a librating 24-hour satellite) = 3 . 43)

For the constant J,, = -1.7 X 10°¢ (derived in this study from long-term observations on the
drift of the Syncom II satellite) and using the additional constants from this study (i = 33 degrees,
a, = 42166 km, R, = 6378.388 km), Equation 30a gives

A, = 23.2x 107® rad/sid. day? .

Equation 43 then gives

a, (absolute max.) = 0.72 x 1073
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from which, by Equation 29a,

Aa (absolute max. from a “synchronous’ condition near

the equatorial major axis, for a satellite of i = 33 degrees) = 30.7 km.

Thus the assumption made in Equations 10 and 11, to approximate the slightly varying semimajor
axis by a_(a constant) throughout the drift motion, appears amply justified.

Figure 4 is a graph of Equation 41 for a, vs. y (the longitude with respect to the nearest minor
axis location) as a function of y,, the longitude in the initially stationary configuration.

Note that Equation 41 allows equal + values for a, for eachy. Suppose the satellite is initially
at + 7, (position 1 in Figure 4) from the nearest location of the minor axis. From Equation 33,
sin 2y, being positive, the satellite begins to drift west (attaining a negative drift rate) toward the
minor axis. But, from Equation 40, since C, = 0, a, = -7/37 > 0; the drift therefore proceeds
counterclockwise in Figure 4, around the central point of the minor axis and a; = 0, along the up-
per portion of the two-valued arc determined from Equation 41.

91 max FOR A
— "SYNCHRONOQUS"
LONGITUDE

CIRCULATION PATH FOR
ENERGY CONSTANT
Cy = A cos 2y0

90°

MAJOR
EQUATORIAL
AXI1S

MAJOR EQUATORIAL

AXIS
14

CIRCULATION PATH
WITH MAX. ENERGY
[T (Cy = Az) FOR A
LIBRATING 24 -
MINOR
EQUATORIAL HOUR SATELLITE

AXIS

[

20°

Figure 4—Libration with longitude of the semimajor axis of a 24-hour satellite as a
function of the longitude of the initially stationary configuration.
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The same situation holds for the motion beginning or stemming away from the ""'synchronous"
longitude at - v, position 2 in Figure 4. Here sin 2y is negative, and the drift proceeds at a posi-
tive rate to the east. Again from Equation 40, as soon as the satellite leaves position 2, a, = -7/31<0,
and the circulation continues in a counterclockwise direction. Every trajectory in the phase plane
a, <> v may be conveniently defined by the constant ¢, of the "energy integral" of the drift motion
(Equation 36). Since Equation 33 is the equation of motion defining the large-angle oscillations of
a mathematical pendulum (in the case of the 24-hour-orbit satellite, the point of symmetry is the
minor axis where 2y = 0), it can be expected that the general solutions in that theory (Appendix E)
apply to a good approximation to the long-term librations of the near-synchronous satellite, pro-
vided the drift rates are not large.* For example, in Equation 36, with a momentarily ""synchronous"
condition at 5, being given by 7, = 0, the "energy constant” is evaluated as

C, = —Ajcosly .
With this evaluation, Equation 36 becomes
72 - A, cos2y = - A, cos2y, . (44)

Solving for the initially ""synchronous' longitude as a function of any longitude in the drift and the
corresponding longitude rate, Equation 44 gives

Yo B ‘;‘ cos! (cos 2y~ %:;) . (45)
Since 7'2/A22 > 0, the argument of cos™! in Equation 45 is always less than or equal to 1. Thus, as
long as (cos 2y - y")/A22 >-1, then 45 will give a real solution for the momentarily ""synchronous"
longitude with respect to the minor axis. But, if (cos 2y - 7'2)/A22 < -1, there will be no real momen-~
tarily ""'synchronous' configuration for the near-24-hour satellite. With this energy, the world-
circulation regime commences, corresponding to the over-the-top, high-energy regime of the
mathematical pendulum (Reference 1). The above inequality implies that, for the commencement
of "world circulation’ for the near-24-hour satellite,

¥2 > A22 (1+cos 2y) ,

or
y2 2A 2 Y .
Y 2 22 cos ( 16)

When 2y = 0, or the satellite is over the minor axis, Equation 46 allows the maximum possible
drift rate for a librating 24-hour satellite:

Vmax, for libration = (2A22)1/2 rad/sid. day . (47)

*Author has two papers “in preparation, 1965” on this subject, to be Goddard Space Flight Center X-documents.
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For example, using the reported value of A,, = 23.2x 1076 rad/sid. day? for the inclination of
the Syncom II satellite, Equation 47 gives

y - = (46.4x 107%)Y2 = 0.39 degree/day.
’)/max, for libration with J22 = -1.7x10 6, i = 33O ( x ) g / y

(48)

APPROXIMATIONS TO EXACT DRIFT SOLUTIONS FOR PERIODS
VERY CLOSE TO SYNCHRONOUS

Although a first integral to Equation 33 can be found easily (Appendix E), the second integral
can give the drift only as a function of time in a closed form, in terms of an elliptic function. How-
ever, for reasonably small excursions from a momentarily synchronous configuration, Appendix E
shows that the elliptic function can be approximated to good accuracy by the first few terms of a
Taylor series expansion in the time from synchronism At.

Expanding the drift from the "synchronous' longitude (y = v, in this section) in a Taylor
series, with respect to increments of time At from the momentarily stationary condition,

(AY?
2) Y

(At)? (o)t
o 6 *70[“] v

Y(BL) = vy F Yo At Y,

(At)®
B foz0 t - (49)

(OE)S (At)S Ay’
+ 70[5] 120+ 70@ 720 7ol <"504o Yo

Differentiating Equation 33 six times with respect to time, it is clear that all derivatives in Equa-
tion 49 can be written as functions of A,,, »,, and y,. Noting that y(Bt) -y, = M (the geographic
longitude with respect to the "synchronous" configuration) and 7, = 0, then 49 can be shown to
reduce to the expansion

2 4 6
A = (_ A,, sin 2y0) QA_E)_ + [(A22)2 510470] %)_ + [(A22)3 sin 2y, (4 sin? 2y, - 1)] (A;())

- [(A22)4 sin 4y, (34 sin? 270—1):]-(1%% oo (50)

It is apparent that, as At — 0, the higher order terms of Equation 50 become increasingly more in-
significant to the total drift, in comparison to the terms of lower order.

In Appendix E, the exact "elliptic integral'" of motion from Equation 33 is calculated from a
synchronous longitude of 60 degrees east of the minor axis. This calculation demonstrates that
the simple term-inclusion~time criterion below gives an adequately converging series to the
"exact" drift. In the actual reduction, all higher order terms in Equation 50 which are less in
magnitude than the root mean square (rms) error of the observed Syncom II longitudes are ignored.
The section on reduction of orbits (p. 22) in this report shows that this rms error of longitude de-
termination for the ascending equator crossings of Syncom II from August 1963 to March 1964 has
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been of the order of +0.025 degree. Thus, 0.025 degree is used below in forming the minimum-
time-term-inclusion criterion for each term of Equation 50. A,, is assumed to be 23.2 X 1076

rad/sid. day?2.

1. For inclusion of the (At)* term,

tsin 4y0] is maximum when gy = 122.5 and 167.5 degrees.
Therefore,
Ar)*
|A\mx (from the fourth-order term)f = (An)2 g—f}' . (51a)

Solving Equation 51a for At, when |& ., (fourth order)| = 0.025 degree,

1/4
At (min. fourth-order term inclusion) = [0.025)(24/57.3)( (23.2x 10'6)2]

= 66.5 sid. days from “synchronism.”

2. For inclusion of the (At)® term,

sin 2y, (4 sin? 2y, 1) is maximum when y, = 145 degrees.
Therefore,
. s (Br)®
&\ (from the sixth-order term)l = (Azz) %0 (51b)

Solving Equation 51b for 4t, when |\ (sixth order)| = 0.025 degree,

1/6
At (min. for sixth-order term inclusion) = [0.025x60/57.3x(23.2 xlO-G) ]

= 113 sid. days from “synchronism.”

3. For inclusion of the (At)® term,

sin* Yo (34 sin? 2y, - 1) is maximm when v, = 59 1/4 degrees.
t
Therefore,
4 ()8
M\ (from the eighth-order term)| = 21.2 (A22) 10080 ° (51c)

max
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Solving Equation 51c for At, when |A>\ (eighth order)| = 0.025 degree,

max

At (min. for eighth-order term inclusion)

4 1/8
[10080x 0.025/21.2 4 57.3 « (23.2 x1076)" |

171 sid. days from ‘“synchronism.”

Similarly, expanding a, (t) in a Taylor series about the time of ""synchronism" (t,, 7, ),

. . (At)? At)?
a, (to +At) = (al)o + (al)o (At) + (31)0 3t (al)o - uE KR (52)
But, from Equation 34,
. A,, sin 2y,
(3)0 = —=— - (52a)
Differentiating Equation 52a with respect to time gives
. 2y, A,, cos 2y,
(81)e = — 3% — =0, (52b)
since ¥, = 0. Differentiating Equation 52b with respect to time gives
= 4(70)2 Ay sin2y, 27y Ay, cos 2y, - (Ap)? sin 4y,
(81)o = 3 + 3 = 3 ' (563)

using Equation 33. From the conventional definition of a;, (a,), = 0. Equation 52 then becomes

) C o (A sin2yg) Bt (Ay,)? sindy, (A)°
a, (at Ot from “synchronism™) = 3, - 18, toeee (53a)

with the results of Equations 52a, 52b, and 53 in 52.

The section on reduction of orbits shows that the rms error of semimajor axis determination
for Syncom II (including sun and moon 'noise') is the order of +0.5 km. Therefore, the rms error
to be expected in a, is of the order of 0.5/42166 = 1.185 x 107°. Following the procedure for the
longitude drift, 1.185 x 10~° is used below to determine the minimum time for the inclusion of the

terms beyond the first on the right-hand side of Equation 53a, to insure adequate convergence of the
infinite series for a, (At).

1. For inclusion of the (4t)3term,

‘sin 4')/0‘ is maximum when ¥, = #22.5 and #67.5 degrees.
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Therefore,

(A 2 It 3
, 22 )
|21 max (from the third-order term of 533)‘ = T 1s (54)

Solving Equation 54 for 4t, when |a, .| = 1.185X 1075,

1/3
1.185x 1075 x 187
At (min. for the third-order term inclusion in 53a) < . . )

(23.2)2x 10712

108 sid. days from
synchronism.

From a "'synchronous™ configuration at 54.8 degrees west of Greenwich, on or about September 6,
1963, Syncom II drifted to 59.2 degrees west of Greenwich on November 28, 1963, where it was
"stopped' by the tangential firing of on-board cold-gas jets. A second free-drift period followed
from a "synchronous' configuration at 59.2 degrees west on about November 29, 1963, to 66.3 de-
grees west on March 18, 1964, where the on-board tangential jets were fired to speed up the west-
ward drift. Of the 34 separate orbits calculated by the Goddard Data and Tracking Systems
Directorate for these free-drift periods, only 7 fell outside the minimum 66-day period around a
condition of "synchronism,” for which the inclusion of higher order terms in Equation 50 would be
necessary in reducing the drift data according to that theory. The data reduction in the section on
reduction of orbits includes only those orbits falling within the minimum 66-day period around
"synchronism." Further refinement of this reduction to include the 7 outside-of-synchronous
orbits (according to the above criterion) will be made in the near future. This refinement is not
expected to materially affect the results of this report.

Summarizing, the results show that within reasonable excursions, the drift in longitude from
a synchronous mean longitude is given approximately but explicitly in terms of time as

At?

A= A = (A sin2y,) 5 - (54a)
The corresponding mean daily radial drift is
A, sin 2y
. - (L?ﬂ__") A (54b)

Appendix E shows that Equations 54a and 54b are good approximations of the actual drift solutions

if At is limited to the order of about 100 days for the probable order of magnitude of the earth's
dominant tesseral gravity harmonic. The study in Reference 4 comes to the same conclusion. It

is clear that the two drift periods for Syncom II, August to November 1963 and December to March
1963-1964, in the close neighborhood of momentary synchronism at 54.8°W and 59.2°W fulfill in
large measure the requirements for accuracy of the explicit drift equations 54a and 54b. The
actual analysis of the data relied most heavily on 54a, since the mean daily change of the semimajor
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axis was more difficult to extract from the limited data because of sun and moon perturbations
which had large variable effects on orbits with epochs at different anomalies from the ascending
node of the satellite. Note that Equation 54a, differentiated twice, yields

K= 5 = - Ay,sin2y, (54c)

which is sufficiently accurate for the greater part of the two separate drift periods for Syncom II
(see Appendix E). Thus, knowing % from the actual data for the two drift periods, Equation 54c can
be solved uniquely for A,, and y,, giving the magnitude and phase angle of earth equatorial el-
lipticity assumed to have caused the accelerated drifts in the vicinity of the two separated ""syn-
chronous" longitudes.

DETERMINATION OF EARTH-EQUATORIAL ELLIPTICITY FROM TWO OBSERVATIONS
OF DRIFT ACCELERATION AT A GIVEN LONGITUDE SEPARATION

While it is true that two evaluations of the near-synchronous drift accelerations at separated
longitudes will determine the amplitude (A,,, and thus J,,) of the perturbing sine function, the
phase angle (7,, and thus »,,) will have multiple solutions. However, since it is known from the
section on solutions of drift equations that the drift acceleration is always in the direction of the
nearest extension of the minor equatorial axis of the earth, the proper quadrant of the phase angle
of equatorial ellipticity always can be resolved.

Given two independent near-synchronous drifts (in the sense discussed previously), whose
momentarily synchronous longitudes (v,), and (y0)2 are separated by VA. Let the two drift
accelerations at these two "synchronous' configurations be (¥,), and (¥,),. The drift accelera-
tions may be determined from drift-data reduction according to the theory of Equation 50. From
Equation 33,

——
NG
(=]
-
o
1

- (A22)l Si"Z(“/o)l (55)

and
('.Y'o)g = - (Azz)z sin2[('y0)1 +V}\] , (56)

since (7o), = (7)1 = VA = (Xo), - (Ao); - Expanding Equation 56 and dividing by 55 gives

{gzg j] [(:Z ; :] = [cos 2Vx + sin 29 cot 2(y,) 1] : (57)
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Solving Equation 57 for (v,),,

-1 sin 2VA .
‘o) (Az2), (58
o)y (Rza)e ~ oo 2 !

The quadrant of (70 )1 is either the first or the fourth, because drift acceleration is always in
the direction of the nearest longitude extension of the earth's minor equatorial axis.” Once the
minor axis is located by Equation 58, the absolute value of J,, in the earth's triaxial gravity field
can be determined through Equations 55 and 30a, for example, as

— (A22)1 _ ('5;0)1
Iy = : B | (59)

cos? i, +1 coszil+l

7272 [RO/(as) 1]2 —_— 727725in2(70)1[R0/(as)1]2 —

Note that the units of (7,), in Equation 59 must be those of radians per sidereal day?, so that J,,
will be dimensionless. Note also that in Equation 58, using the result of 30a,

(A22)1 _ [(as){lz cos? i, +1
(Az)2 (@s)1 2

cos 12+1

(60)

Using Equation 58, since (AO) 1 is known from the data reduction (the geographic longitude of the
"synchronous" configuration), the geographic longitude of the nearest minor axis location can be
calculated as

Y22 = (Ro)s - (70)1 . (60a)

Similarly, the geographic longitude of the nearest major equatorial axis location can be calculated
from

Ayy T (}\0)1 - (70)1 + 90 degrees (60b)

(see Figure 3).

Following the theory of Wagner,' the difference in major and minor equatorial radii of the
earth's triaxial geoid a,-b, is related to the gravity constant J,, by

ag - by = - 6RJ,, . (61)

*Thus, the quadrant of the tanlin Eq. 58 canbe most simply resolved by choosing the first or second quadrants if () 1<0, and the third
or fourth if (V5); > 0.
fWagner, op. cit. (See footnote, p. 7).
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REDUCTION OF 27 SYNCOM Il ORBITS TO DETERMINE THE EARTH'S
EQUATORIAL ELLIPTICITY

Appendix D tabulates the 27 Syncom II orbits from which the reduction below was made.
Table 1 gives the estimated ascending equator crossings nearest to the epoch of these orbits.
These were calculated by hand and therefore are listed only to 0.01 degree and 0.01 day. The
technique used was to locate from the Nautical Almanac the geographic longitude of the ascending
node at epoch through the reported right ascension of the ascending node for the orbit, and the hour-
angle of the vernal equinox calculated at epoch. The geographic longitude of the ascending equator
crossing was then estimated by turning the earth backward or forward through the orbit angle
from the ascending node to the satellite at epoch. This latter quantity was estimated as « +M, or
360° - (w+M), for the near-circular orbit of Syncom II. A correction factor to this orbit angle—
the ratio of the satellite's period to the earth's sidereal period—was applied for orbits whose
period was sufficiently different from the earth's. The nodal longitude at epoch, plus or minus this
reduced nodal excursion angle, is the estimated ""ascending equator crossing nearest to epoch' re-
ported in Table 1 (see Appendix D for an example of this calculation).

Table 1
Estimated Ascending Equator Crossings Nearest the Epoch of 27 Syncom II Orbits

First Drift Time from Ascenfiing Equator Second Drift Time from‘ Ascenfling Equator
Orbits 20.0 Aug. 1963 Crossing (degrees Orbits 26.0 Nov. 1963 Crossing (degrees
(days) west of 50.0°W) (days) west of 50.0°W)
1-1 2.12 4.89 2-1 1.86 9.17
1-2 7.11 4.83 2-2 7.84 9.17
1-3 11.09 4.78 2-3 13.83 9.22
1-4 16.08 4.74 2-4 20.81 9.38
1-5 20.07 4.77 2-5 41.75 10.15
1-6 23.06 4.78 2-6 44.74 10.36
1-7 28.05 4.85 2-7 55.71 11.02
1-8 31.04 4.90 2-8 64.69 11.76
1-9 38.02 5.06 2~9 71.67 12.32
1-10 42.01 5.09 2-10 76.66 12.81
1-11 48.99 5.45 2-11 83.64 13.49
1-12 54.97 5.68
1-13 62.95 6.09
1-14 70.93 6.60
1-15 77.91 7.14
1-16 83.90 7.61
=100.0 First free-drift
period ends at an
ascending equator
crossing of =9.15°
west of 50.0° West

22




] a

Table 2 gives the Goddard-reported semimajor axes for these 27 orbits. Truncating Equa-
tions 50 and 53a at their first right-hand terms gives

AN (longitude drift from “synchronism™) =

a, (semimajor axis change from

“synchronism’)

- (A,, sin 2y,)

At)?
G5 (62)

. sin 2y, (At)
= Ay 3 : 63)

Let the drift time be given from a certain arbitrary base time by T; let T, be the time of "syn-
chronism" from the base time. Let the drift be given from a certain arbitrary geographic longi-
tude by » and let A, be the geographic longitude from this base longitude of the "synchronous"

configuration. Then

and

A = T-T, ,
oy = A= Ao
Table 2

Goddard-Reported Semimajor Axes for 27 Syncom I Orbits

First Drift

Time from
20.0 Aug. 1963

Semimajor Axis

Second Drift

Time from
26.0 Nov. 1963

Semimajor Axis

Orbits (days) (42160.0 + data; km) Orbits (days) (42160.0 + data; km)
1-1 2.27 4.58 2-1 2.04 5.89
1-2 6.71 4.52 2-2 8.00 7.20
1-3 11.00 6.02 2-3 14.00 7.18
1-4 16.00 6.39 2-4 20.71 8.17
1-5 20.00 6.35 2-5 41.71 8.01
1-6 23.08 6.55 2-6 44.25 9.90
1-7 28.08 6.70 2-7 55.88 11.43
1-8 31.08 7.42 2-8 64.83 11.91
1-9 38.08 7.51 2-9 71.67 12.89
1-10 42.08 8.88 2-10 76.79 13.31
1-11 49.08 9.14 2-11 83.71 14.89
1-12 55.08 9.78
1-13 63.08 11.51
1-14 71.00 11.09
1-15 78.00 12.15
1-16 84.21 12.51

=100.0 First free drift

period ends with a
semimajor axis of
=42174.5 km
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With these changes, Equations 62 and 63 become [noting that a, = (a-a, )/as]

A,, sin 2y,

A= A~ T? - 2TT, + TZ ,

or

Ty (A,, sin 2%, A,, sin2y
A= [Ao“ %‘-‘—) + T (TOA22 sin 2’y0) + T2 <-— Lz——o) . (64)

(Note that, from Equation 64, X = - A,, sin 2y, = %, from Equation 33. This result is valid only for
orbits sufficiently close to '"synchronous,” as discussed previously.)

A,, sin 2y,

a = as+as<———‘—'—3ﬂ >(T—To),

or

T, A,, sin 2y a_A,, sin 2y,
N <1_ 0 B2z 0>+T< s 22377 o) . (65)

Equations 64 and 65 may be written with determinable coefficients as

A = dy +d, T +d,T?, (66)
a = e, te T, (67)
where
2 : D
B TS A,, sin 2y,
dy = A~ " 3 °
d, = + A22 T, sin 2y, ,
A, sin 2y
22 0
d2 = —_ ——-—2—‘- ’ ? (68)
. Ty Ay, sin 2y,
ey = a 1- ———377__/ ,
sin 2y,
= A
€ ag oy 3 J

24




P «

From Equation 68,

T, = -d/d,, (69)
(4,)?

Ao T dp - 4d, (70)

’570 = - A,ysin2y, = ad, . (71)

Alternately, and as an internal check on the theory of the coupling of the drift and orbit expansion,

~ e,
Yo = — A, sin2y, = =

s

implying

d, = 37743‘/2as . (72)

In Equation 72, the units of d, must be radians per sidereal day?, and the units of e, must be
length per sidereal day so that the equation will be dimensionally correct. The semimajor axis at
the "synchronous" configuration is calculated from Equation 67 for T = T,:

a = (=P + el TO . (73)
For the first drift period (orbits 1-1 through 1-16), the best estimates (in the ""least squares"

sense)of the coefficients (d), and (e),, obtained by fitting Equations 66 and 67 to the data in Tables 1
and 2, have been found to be

(dO)l = 4.941 1 0.018 degrees,

(dl)1 = - 0.0216 * 0.0010 degree/solar day,

(d;); = (6.37£0.11) x 107" degree/solar day?
= (6.33+0.11) x 107 degree/sid. day?,

(e0)1 = 4.35 % 0.19 km,

(e1)1 = 0.0993 + 0.0042 kn/solar day

= 0.0990 + 0.0042 km/sid. day.

+
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The mean value of the inclination during this period was

1; = 33.018 + 0.005 degrees.

From Equation 69,

—
]
(=]
~—
-
I

(}6.95 ! }j%%) days from 20.0 August 1963.
From Equation 70,
(Ro); = 4.76 £ 0.03 degrees west of 50.0°W long.
From Equation 71,
(%5); = - (1.27£0.02) x 107 degree/solar day? = - (2.20£0.04) x 107 rad/sid. day’.
From Equation 73, and the above value of (T,),,
(a,): = 42166.0 + 0.2 km.

For the second drift period (orbits 2-1 through 2-11), the best estimates (in the "least squares"
sense) of the coefficients d, and e,, obtained by fitting Equations 66 and 67 to the data in Tables 1
and 2, have been found to be

9.156 + 0.017 degrees,

—
[s N
o
~—
)
1l

- (0.0030 + 0.0010) degree/solar day,

P
o.
-
P
~
1

(dy), = (6.59+0.11) x 107" degree/solar day?,
= (6.55:0.11) x 107* degree/sid. day?,

(¢0)2 = 5.70  0.42 km,

(91)2 = 0.0994 + 0.0080 km/solar day

= 0.0990 + 0.0080 km/sid. day.

The mean value of the inclination during this period was
i, = 32.851 t 0.010 degrees.
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From Equation 69,

(To), = 2.3 £ 0.8 days from 26.0 November 1963.
From Equation 70,
(Ao)z = 9.15 % 0.02 degrees west of 50.0°W long.
From Equation 71,
(¥o)2 = - (1.3240.02) x 107% degree/solar day? = =~ (2.29+0.04) x 107° rad/sid. day?®.

From Equation 73, and the above value of (T,),,
(a). = 42165.9 £ 0.4 km.

(See Figure 5 for a graph of this orbit data and reduction for the two drift periods.) Combining
the above results of the two free-drift periods, from Equation 60,

(A 2

_B)_l_ cos? (33.018 + .005) + 1
= (42165.9 + 0.4/42166.0 + 0.2)2

(A2) 2 (42165.9.£0.4/42166.0 £ 0.2)" =5 32 8512 .010y + 1

= 0.99845 i .00014.
The longitude separation between the two drift periods is given by
I = (hg) o~ (he)y = [-(59.15£0.02)] - [-(54.76 £0.03)] degrees

- (4.39 £+ 0.05) degrees geographic longitude.

Thus,

2UN = - (8.78+0.10) degrees geographic longitude.

Therefore, from Equation 58, the location of the minor equatorial axis with respect to the ''syn-
chronous' longitude during the first free-drift period (54.76 + 0.03 degrees west of Greenwich) is

sin [~ (8.78 +0.10)]
(0.99845 £0.00014) - cos [~ (8.78 £0.10)]

-1 1
(o)1 = 2 tan ' ST Hio.0
1.2710.02

tH

+4
(54 - 6> degrees east of the minor equatorial axis.
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.

From Equation 60b, the best estimate of the location of the major equatoriai axis is

+5 5
ANpgg = — 55 - (54_6) +90 = - (19t6> degrees geographic longitude. (74)
From Equation 59, the best estimate of the triaxial gravity coefficient J,, is

-(2.20+0.04) x 1073

Jo2 7 o 2
7272 sin 2 <s4°fgo> (6378.2/42166.0 +0.3)? — (33'0128 $0.005) +1
_ +0.07 —6
- - 167_003 X 10 - (75)

The mean equatorial radius, taken as R, = 6378.2 km, is a compromise for a number of cur-
rently used values. It is stated above without error. The likely error in (a_ ), has been increased
arbitrarily by 0.1 km to account for the likely uncertainty in R,.

The results of the simulated Syncom II trajectories for these drift periods (Appendix C)—with
equatorial ellipticity parameters close to Equations 74 and 75 included in the particle program of
the simulation—shows that sun, moon, and earth zonal gravity over the 3-month drift periods
studied does not substantially affect the simple theory of this reduction.

However, the simulations show small biases in the simple reduction for 7,, and »,, from
Equations 62 and 63 on the basis of an elliptical earth equator only.

The final reduced geodetic parameters adjusted for cumulative sun, moon, and earth zonal
gravity effects are:
J,, = - (1.70£0.05)x 107° (76a)
(where J,, is adjusted for all but higher order longitude earth-gravity effects), and
Ay = - (19£6)° (76b)
(where \,, is similarly adjusted; see Appendix C). As noted, higher order longitude earth-gravity

effects have not been taken account of in these final results.

As can be seen from Figure Al, (the earth's longitude gravity field at the equator according to
a recent estimate) the effect of higher order gravity on the results of Equation 76 is not expected
to exceed 15 percent on J,, and a few degrees on \,,. Figure 6 shows a comparison of the 24-
hour altitude longitude gravity field along the equator as derived herein from Syncom I drift over
Brazil and three other recent estimates from lower altitude satellite and surface gravity data.
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LONGITUDE GRAVITY ACCELERATION VS, LONGITUDE:

FROM THE DOPPLER - SATELLITE GEOID OF DOPPLER - SYNCOM II

GUIER (1963) DETERMINATION OF
S~ WAGNER (1964)
N 7T
2 / . X / NN
CAMERA—SATELLITE/ / \ \ SURFACE - GRAVIMETER i/ \
GEOID OF - GEOID OF e
IZSAK (1963) / / // iﬁ\ UOTILA (1962) ‘ : \
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gs = 0.735 ft /sec?
(Radial earth - gravity
acceleration af the
"synchronous" altitude )
-4 1
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GEOGRAPHIC LONGITUDE (degrees)

EQUATORIAL, LONGITUDE GRAVITY ACCELERATION (]0'795)

Figure 6—The earth's longitude gravity field at "synchronous altitudes" on the
equator, according to recent estimates on different bases (see Table A1).

Using the above estimate of J,, from observations on Syncom II drift, the difference between
the major and minor equatorial radii of the triaxial geoid is, by Equation 61,

ag — by = 65 + 2 meters = 213 £ 6 ft.

Comparing the deviation due to earth ellipticity with other higher order earth-gravity devia-
tions (Appendix A*), we note that the above figure implies a maximum deviation from the mean
earth sphere, due to the ellipticity of the equator, of

AR, = 107 £ 3 ft.

STATION-KEEPING REQUIREMENTS FOR EQUATORIAL 24-HOUR SATELLITES

Following the calculation first made by Fleig,! maximum station-keeping requirements for a
synchronous equatorial satellite in a purely triaxial earth field occur at a longitude 45 degrees

*Also, Wagner, op. cit. (See footnote, p. 7).
"Fleig, A., "Effect of Nonsphericity of Earth’s Gravitational Potential on an Equatorial Synchronous Satellite,” NASA Goddard Space
Flight Center, Guidance and Control Section (Code 622) Report 43, June 15, 1962.
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. .
from the major axis of the elliptical equator. The triaxial longitude perturbation force which

must be continually counteracted by on-board propulsion devices to achieve perfect station keep-
ing is given in Appendix A (Equation A4) as

(Fa)2z ~ (:E)z C—ZT [6]22 sin 2(>\->\22)] . (17)

The maximum perturbation force occurs at longitudes where » -x,, = 45, +135 degrees; or, for
the reported adjusted value, ,, = -19 degrees; maximum perturbation forces occur at

A = - 64, - 154, 116, 26 degrees . (78)
For the reported adjusted value; J,, = -(1.7) X 107¢, with
ke/(as)? = 0.735 ft/sec?. (Ro/a,)? = 0.0229 ,

the maximum yearly impulse per unit mass, or velocity requirement for perfect station keeping
(at these longitudes), is:

(Fp) 22, max * T(1 year) = A&V = 0.735x0.0229 x 86,400 x 365x 6x 1.70 x 1076

T,max

5.36 ft/sec/yr . (79)

The result in Equation 79 is strictly true only for a triaxial earth field. As Reference 4 shows,
and the combined geoid of Kaula (1964) confirms, the absolute maximum longitude perturbation
(at 24-hour altitudes) in a full earth field may increase by as much as 15 percent over that in the
simple triaxial field. According to the combined geoid of Kaula (1964), this absolute maximum
longitude perturbation occurs over Indonesia (see Figure Al, Appendix A).

For synchronous satellites to be kept permanently in this quadrant may require, conservatively,

MV vemax - 617 ft/sec/yr . (80)
However, this latter result may not be conservative enough if there is an additional bias in the
reported value of J,, (in Equation 76) due to the neglect, in that reduction, of these same higher
order effects. A study of Kaula's geoid of Figure Al, Appendix A, certainly indicates that such a
bias would be present for a J,,-only reduction from the full field effects at the two longitudes
-54.8and -59.2 degrees. An investigation is underway by the author of these probabie higher order
effects on the reported Syncom II geodetic reductions from drift over Brazil (Equation 76).

DISCUSSION OF RESULTS

Some discussion is in order on the validity of the reported geodetic parameters (Equa-
tion 76). These adjusted parameters, without accounting for higher order earth-gravity
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effects, show a somewhat stronger and west-shifted equatorial ellipticity than the most
recent satellite geoids (see Table Al, Appendix A). Around the equator, the reported Syn-
com II determination yields a longitude gravity field at 24-hour altitudes in reasonable agreement
with recent satellite and surface gravimeter determinations (see Figure 6). The basic assumption
behind the reported Syncom II determination is that during the analyzed drift periods the satellite
moved free of all external influences except sun, moon, and earth gravity.

It seems very unlikely that other small influences on Syncom II motion, such as (1) micro-
meteorite collisions, (2) possible leaking gas from the satellite, (3) solar radiation and solar wind
pressure, (4) magnetic field interactions, and (5) planetary gravity, could have had appreciable
selective influence on the observed accelerated drift of the satellite. The fact is that the simulated
Syncom II drifts (Appendix C) in a sun, moon, and earth-gravity field only reproduce the observed
drifts in all particulars to a degree which seems to preclude other influences except small random
ones.

From injection to mid-August 1963, there appeared to be some question as to possible leaking
of gas on board Syncom II. Monitored gas pressure levels in some of the propellant tanks de-
clined erratically between correction maneuvers in this period. However, levels were reasonably
constant in the analyzed long free-drift periods. The evidence of erratic and declining gas pres-
sure levels on board Syncom 1I is thought to be due, at least in part, to pressure transducer
calibration errors.

Sun, moon, and zonal earth-gravity influences on Syncom II's long-term drift acceleration, as
well as model errors made in the assumptions of orbit circularity and unchanging inclination, have
been accounted for in the simulated drift reductions. As yet, only two sustained longitude samples
of the earth's gravity field have been taken by a 24-hour satellite. It is noted from the evidence
of Figure Al (Appendix A) and Reference 4* that the ""true value" of the magnitude of equatorial
ellipticity, when all higher order earth-gravity effects are accounted for, may be as much as 15
percent higher than that reported herein. With the next few samplings at reasonably separated
longitudes, a considerable refinement in the estimate of equatorial ellipticity (as affected by higher
order gravity) should be possible. Along with this refinement should come an order-of- magnitude
estimate of third- (and higher) order longitude earth gravity. Much geodetic information remains
to be revealed by closely following the drift of Syncom II and other 24-hour satellites soon to be
launched by NASA.

CONCLUSIONS

From this investigation into longitude-gravity-caused Syncom II drift, the following conclu-
sions are made:

1. Longitude-dependent earth gravity exists and must be reckoned with in the long-term opera-
tion of 24-hour satellites.

*Also: Private communication from W. M. Kaula, 1964, “Theory of Satellite Geodesy,” (unpublished text for a course at the Institute of
Geophysics and Planetary Physics, UCLA, Los Angeles, Calif.)
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2. As far as 24-hour satellites are concerned, the earth can be assumed to be only a triaxial
ellipsoid with the following measures of equatorial ellipticity:

(a) Jp = -(1.70£0.05)x 1076
corresponding to a 65+ 2 meter difference between major and minor equatorial radii;

(b) Npp = -(1916)° ,

locating the geographic longitude of the major equatorial axis.

3. Higher order earth-gravity effects appear to distort the simple triaxial field at 24-hour
altitudes, by about 10 to 15 percent, at most, around the equator. A few of these effects of the
third- and fourth-order should be well discriminated by long-term observations of future 24-hour
satellites.

4. With negligible higher order earth effects assumed, the maximum longitude gravity station-
keeping requirements for the 24-hour satellite are 5.36 ft/sec/yr.
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Appendix A
Earth-Gravity Potential and Force Field Used in this Report:
Comparison with Previous Investigations

The gravity potential used as the basis for the data reduction in this study is the exterior po-
tential of the earth derived* for geocentric spherical coordinates referenced to the earth's spin
axis and its center of mass. The infinite series of spherical harmonics is truncated after J,, .
The nontesseral harmonic constants J,,, J;,, and J,, are derived from Reference 8.

The earth radius R, used in this study is

R, = 6378.388km.

The earth's gaussian-gravity constant used is
pg T 3.9862677 = 10° km3/sec?.

Neither of these values, taken from Reference 9, nor the ""zonal geoid" of Reference 8 is felt to be
the most accurate known to date. They are the values used by the GSFC Tracking and Data Sys-
tems Directorate to calculate the orbit elements of Syncom II from radar and Minitrack observa-
tions. They were chosen to insure consistency between the data of this study and these published
orbits, inasmuch as the "triaxial' reduction for which this study has been undertaken is not sig-
nificantly affected by the probable errors in these values. The second-order tesseral harmonic
constants used in the simulation studies were

J,, = -1.68x1076,

Ay, T ~ 18degrees .

These are the values shown on the "tesseral geoid" below (for the J,, harmonic). At a later point
in the analysis, the slightly different values reported in the abstract were estimated. The most
accurate ""zonal geoid" is probably that of Kozai (see Reference 4), with the following earth constants:

R, = 6378.2km,
Jo = 1082.48 x 1076, J3p = - 2.56 x 1075, J,, = - 1.84x 1079,
pg = 3.98603 x 10%km3/sec?.

The earth's gravity potential (to fourth order, probably sufficient to account for all significant
longitude perturbations on a 24-hour satellite) is given by Equation Al, which may be illustrated
as follows (following Reference 4, Appendix B):

*Wagner, op. cit. (See footnote, p. 7.)
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The earth-gravity field (per unit test mass), whose potential is Equation Al, is given as the gra-
dient of Al, or

av « AV, 5 av
= o s ~ _ _ o~ __E A E ¢ 7E
F = fF +AF) *¢F, = Wy = T3 VTS an 1 98 (A2)

or

F, = % {— 1+ (Ry/r)2 [3/21,0 (3sin?¢=1) + 97,5 cos? ¢cos 2(h=1y,)
+ Q(Ro/r) Js0 (S sin2¢—3) (sin ¢) +6<R0/’r) T (5 sing - 1) Cos¢cos()\— A3l)
+ 60 (Ro/r) T3, cos? ¢ sin¢ cos 2()\ - ?\32) +60(R0/r) Ji; cos?® ¢ cos 3(>\— }\33)
+5/8(Ro/1) 2T, (35sin* ¢~ 30sin2 ¢+ 3)
T 25/2(R0/r) 2 J“ (7 sin? ¢ - 3) cos ¢sin¢cos(>\ - ‘\41)
+75/2(Ry/1) 2 T4, (7sin?¢-1) cos? ¢ cos 2(h ~A,,)
+ 525 (Ro/r) 2 J43 cos? ¢ sin ¢ cos 3(,\ —)\43) + S25(R0/r)2 J44 cos? ¢ cos 4(?\' )\44)]} s (A3)

i
Fy = 5 (Ry/r)? {6755 cosdsin2(h=ry0) 3/2(Ro/r) Ty, (Ssin®y-1) sin -y

+30(Ry 1) Jy, cos ¢ singsin2(h =Ay,) +45(R; /1) J,; cos? ¢sin3(A-Ayy)
+5/2(Ry/r)? 7, (7 sin? ¢ - 3)sin ¢ sin(h =2, )+ 15(Ry /1) T,, (7 sin2 ¢~ 1) cos ¢ sin 2 (A = A,,)
+ 315(R0/r)2 Jas cos? ¢ sing sin 3(\ - )\43)

+420(R,/7)? I, Cos3¢sin4()\—>\44)} (Ad)
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ﬁ : 2{ in 4 4+ in & )
2 (Ro/") 3) 35 sin ¢ cos ¢+ 6] ,, cos $sin ¢ cos 2(« - ,\22)

= 3/2(R,/r) T3 (5sin2¢~1) cos ¢+ 3/2(R, 1) J;, (155in? ¢~ 11) sin@cos( —Ay))

+15(Ry/1) J 4, (3sin? ¢- 1) cos geos 2(A-2y,)

+45(Ry /1) T, cos?¢ sing cos 3( ~Ay;) =5/2(Re/r)2 Ty (7 sin2¢ - 3) sin¢ cos ¢
+5/2(Ry/r)2 J,, (28 sin®¢-27sin? ¢+3) cos(r - 1y,)

+30(R,,1)2J,, (7sin?¢~4) cos ¢sintcos 2(A ~ay,)

+105(Ry,7)2 J,; (4sin? 2- 1) cos? ¢ cos 3(A - 4y,)

+420(R0/r)2J cos3 ¢ sin¢ cos 4(,\-)\“)} (A5)

44

The actual sea-level surface of the earth is to be conceptualized through Equation Al as a sphere
of radius 6378 km, around which are superimposed the sum of the separate spherical harmonic
deviations illustrated. To these static gravity deviations, of course, must be added a centrifugal
earth-rotation potential at the earth's surface, to get the true sea-level surface.*

Table Al gives tesseral coefficients for this earth-gravity field form as reported by geodesists
from 1859 to 1964. Figure Al presents the longitude gravity field at the altitude of the 24-hour
satellite, around the equator, according to the geoid of Kaula-Combined (1964). Figures A2 through
A8 give the earth surface contours of seven recent geoids whose individual tesseral coefficients
are listed in Table Al.

*Wagner, op. cit. (See footnote, p. 7.)
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Figure A2—Satellite-Doppler geoid {(5), Table A]]. Note: In Figures A2-A8, geoid height
(in meters) refers to an ellipsoid of flattening 1/298.24; after Kaula, geoid (17).*

b O
v,{tf;%'/ .

Figure A3—Satellite~Dopple: geoid [(6), Table AI].

*These geoid representations were supplied by W. M. Kaula in a communication to the author, October 1964.
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Figure A5—Satellite-camera geoid [(8), Table Al].
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Figure A7—Surface-gravimetric geoid [(12), Table Al].
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Figure A8—Combined astrogeodetic, gravimetric, and satellite geoid [(]7), Table A]}.




Appendix B

Expressions for the Inclination Factor

Equation 25 in the text gives the inclination factor in the drift causing tangential perturbation
(due to equatorial ellipticity) on a 24-hour satellite with a near-circular orbit as

- 2 N
AN L sin? i

F(i) = cosi +——5—— ; (B1)

Ax_,  is the absolute value of the maximum longitude excursion of the figure-8 ground track of the
24-hour satellite (with a near-circular orbit) from the geographic longitude of the nodes.

From Equation 18, this longitude excursion function is
M= A=, = tan’! (cositan@)—@ . (B2)

Differentiating Equation B2 with respect to the argument angle ¢, the minimax excursion
arguments are found from

d(&n) - - cos i sec?8 _
do 0 1+ cos?itan?g L (B3)

Solving Equation B3 for singat Ax . |

sin QA/\ minimax (cos i+ 1)—1/2

from which

(sec 1)1/2 . (B4)

tan QAA,minimlx

Equation B4 in B2 gives

M = tan ! (cos i)!/? - tan"! (sec i)1/2.

Thus, since only the absolute value of A, . is required,

An = tan"!(sec i)!/2 - tan"! (cos i)}/?, < (B5)

max
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v v

where the tan™! is to be taken in the first quadrant. For example, for i = 30 degrees, Equation
B5 evaluates the maximum excursion as

JAYN = 47.0-42.9 = 4.1 degrees.

max

The nodal argument angle at this maximum longitude excursion is

G(at A)\max> = +42.9 degrees from the nodes .

The assumption in Equation 20 (in text) that the excursion in longitude from the ascending node
could be approximated by

AN = -0\, ., sin 20

ax

predicts the maximum excursion argument as

ﬁ(at JA%Y = 145 degrees from the nodes .

max)

This discrepancy in the assumed longitude excursion function is not serious until i > 45 degrees,
as simulated trajectories with variable inclination have borne out.

Equation B5 can be written as

AN, * tan"! (cos i)1/2 = tan! (sec i)1/?
from which
. M\, * (cos i)I/?
tan(A)x + tan™! (cos i 1/2) = sec ()17? = ,
max ( ) ( ) 1 - A>\max (COS i)l/2 (B6)

for i < 45 degrees. Solving Equation B6 for & _ ,

AN _ 1 - cos i . 1 - cos i
max 2(cos i)1/? - l+cosiv (B7)

for i small.
Thus, the inclination factor becomes approximately

sin?i (1-cos i)

F(i) = cosi ¢ 2(1 tcos 1)
_ . (1-cosi)? _ 2cosi +1 - 2cosi * cos?i
= cosi * 3 = 5
. cos?i 1 (B8)
N 2
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For example, for i = 30 degrees,

F(1)¢,0n 5q. B 0.86603 + 4.1/8x57.3 = 0.8750 ,

F(i)¢rom £q. s ~ 0-8750 .

The agreement of F(i) from forms Bl or B8 is good to the third decimal place as long as the in-

clination is less than 45 degrees. At inclinations higher than 45 degrees, however, the drift theory
following Equation 20 (in text) begins to break down because A\ __is no longer a small angle.
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Appendix C

Reduction of Simulated Particle Trajectories for
Earth-Equatorial Ellipticity

Tables C1 and C2 present data taken from two numerically integrated particle trajectories of a
triaxial earth in the presence of the sun and moon's gravity field. Only perturbed equations of
motion from a periodically rectified Keplerian reference orbit are actually integrated by the
digital computer program (called ITEM at Goddard Space Flight Center). For the three months'
real orbit time of these trajectories, the accumulated truncation and roundoff error in the nu-
merical integration is believed tobe negligible for the purposes of this reduction. The initial posi-
tion and velocity conditions for these simulated trajectories were the same as those reported for
the "actual" Syncom I orbits 1-2 (for the trajectory of Table C1) and 2-3 (for the trajectory of
Table C2). The program used the earth gaussian-gravity constant

Hg = 3.9862677 x 105 km3/sec? ,

which is the gravity constant used by the GSFC Data and Tracking Systems Directorate in comput-
ing the elements of satellite orbits from radar and Minitrack observations. The best estimates

Table C1
Data from Simulated Trajectory Beginning with the Elements of Syncom II Orbit 1-2

(J,, = -1.68x107% R = 6378.388 km,y,, = -108.0: input into trajectory program)

Time from Ascending Equator Crossi L . g
26.709 Aug. 1963 (degrees west of 50.00W Semimajor Axis Inclination
(solar days) geog. long.) (42160.0 + data; km) (32.0 + data; degrees)
2.390 4.816 5.27 1.089
8.374 4.783 7.09 1.072
14.358 4.792 6.01 1.056
20.341 4.861 8.12 1.043
26.324 4.954 7.13 1.025
32.308 5.101 8.98 1.019
38.292 5.291 8.31 0.997
44.276 5.537 9.67 0.991
47.268 5.678 10.38 0.983
50.260 5.821 10.03 0.972
53.253 5.975 9.42 0.967
56.245 6.144 9.74 0.966
59.237 6.326 11.09 0.960
62.229 6.522 11.94 0.957
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Table C2
Data from Simulated Trajectory Beginning with the Elements of Syncom II Orbit 2-3

(J,,=-168x 1076, R, = 6378.388 km, y,, = -108.0: input into trajectory program)

Time from Ascending Equator Crossing Semimajor Axis Inclination
10.0 Dec. 1963 (degrees west of 50.0°W (42160.0 + data; km) (32.0 + data; degrees)
(days) geog. long.) ’ ’ ’ ’
0.823 9.243 6.88 0.881
5.809 9.351 7.30 0.881
10.796 9.495 9.41 0.877
15.783 9.666 8.15 0.864
20.769 9.885 9.85 0.864
25.756 10.134 10.60 0.850
30.743 10.401 9.95 0.842
35.730 10.708 11.81 0.841
40.717 ‘ 11.044 12.18 0.825
45.704 11.412 11.58 0.816
50.692 11.830 13.93 0.808
55.679 12.259 13.11 0.790
58.672 12.534 13.07 0.785
60.667 12.724 13.69 0.784

(in the "least squares' sense) of the coefficients (d),, and (e),,, obtained by fitting the drift and
orbit expansion text equations 66 and 67 to the data in Table C1, have been found to be

(do)s1 @ 4.841%0.004 degrees ,
(dl)sl B -(1.22+0.03)x 10”2 degree/solar day ,

(dz)sl B (6.303+0.038) x 10”* degree/solar day? ,
= (6.268 £0.038) x 10™* degree/sid. day? ,

(eo)sl 8 5.45t41 km ,

= 0.091 4+0.010 km/solar day ,

—
04
-
~—
]
—
|

B 0.091+0.010 km/sid. day .

The mean value of the inclination during this first simulated trajectory period was

i, = 33.00510.003 degrees .
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From Equation 69,

(To) s1 - 9.68%0.30 days from 26.709 August 1963 .

From Equation 70, in the text,

B} +.008 .
(Ao)sl = 14.782 _ g7)degrees west of 50°W long .

From Equation 71,

1"

(Vo) a1 ~(1.261+0.008) x 10”3 degree/solar day?

i

-~ (2.188 +0.013) x 1073 rad/sid. day? .
From Equation 73, and the above value of (T,), ,
(3.)s1 = 42166.3%0.4 km .

The best estimates (in the "least squares" sense) of the coefficients (d)_, and (e),,, obtained by fit-
ting the drift and orbit expansion Equations 66 and 67 to the data in Table A2, have been found to

(do) s2 = 9-22410.004 degrees
(dl) .2 - (1.83010.028)x107? degree/solar day
(dZ)sz = (6.501 £0.042)x 1074 degree/solar day?

= (6.465 +0.042) x 107* degree/sid. day?
(e0)s2 = 7-19%0.37 km

(el) .o = 0.111%0.010 km/solar day

0.111 +0.010 km/sid. day .

The mean value of the inclination during the second simulated trajectory period is

i, = 32.836%0.003 degrees .
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From Equation 69,

(To) 2 - =—(14.07£0.30)days from 10.0 December 1963 .

From Equation 70,

+.009
9.095 - (pg)degrees west of 50.0°W long .

—
\>
(=4
<
B
1]

From Equation 71,

-(1.300 £0.008) x 10”3 degrees/solar day?

(")70) s2

-(2.25710.015) x 1075 rad/sid. day?
From Equation 73, and the above value of (To) 2
(a,).s = 42165.6 0.5 km .

A graph of these trajectory simulations is seen in Figure C1.

Combining the above results for the two simulated trajectories, from Equation 60,

(A ) 2 '
22) 1 cos?(33.00510.003) +1
ANV . = (42165.6 +0.5/42166.3 £0.4)2
(Az2) <2 ( / ) [c052(32.836 ¢0.003)+1}
= 0.99840 0.00007
W= (M) 7 (M) = - (59.095£0.009) - [-(54.782 £0.008)] ,
“2VN = -(8.62610.034) degrees geographic long .

Therefore, from Equation 58, the location of the minor equatorial axis with respect to the “'syn-

chronous longitude" during the first simulated trajectory (54.782 + 0.008 degrees west of Green-
wich) is

sin [- (8.626 +0.034)]

1
Yo)st = 7 tan™' \ T 30:0.008
() To61:0°008 (099840 £0.00007) = cos [- (8.626 £0.034)]

= 52.51%2.5 degrees east of the minor equatorial axis .
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From Equation 60a, the best estimate of the geographic location of the nearest extension of the
equatorial minor axis from the simulated trajectory data is

(722) s - ~54.8 - (52.5+2.5) = -(107.3%2.5) degrees geographic long .

This compares well with the input value of (7,,), = -108.0 degrees used to compute the simulated
trajectories. From Equation 59, the best estimate of the triaxial gravity coefficient J,, from the
simulated data (according to the theory of this report) is

~(2.188 £+0.013) x 1075

(J22)s B

0s2 (33.005+0.003) + 1]

7272 [sin 2(52.5 +2.5)] (6378.388/42166.3 + 0.4)2 [C >

H

~(1.64+0.03)x 107°

The mean equatorial radius used in the simulation is R, = 6378.388 km, the same used to com-
pute the "actual' Syncom II orbits from the radar and Minitrack observations.

The above value 0f(J,,), compares reasonably well with the input value of (J
used to compute the simulated trajectories.

= -1.68x10°°

22) s

The model error implicit in the difference between the reduced and inputed geodetic coeffi-
cients for the simulated trajectories warrants an adjustment of the J,, and A,, reported in the
section on the reduction of the "actual' Syncom II orbits. The values below appear sufficient to
cover all the uncertainties of this reduction for a triaxial earth:

"

J,; (reduced for a triaxial earth) ~(1.70+0.05)x 1076,

A,, (reduced for a triaxial earth) = - (19 %6) degrees geographic long .

As the introduction indicates, the principal effect unaccounted for in the reduction is the possible
influence of higher order earth tesseral anomalies on the drift of Syncom II. Figure Al indicates
that the accumulated influence on synchronous satellites of all higher order anomalies is small
compared with the second-order anomaly according to recent satellite geoids. Close and contin-
uing observations on the drift of 24-hour satellites will clarify this assumption, and should be
rewarded in time by revelation of the ''tesseral' anomalies through third-order with an absolute
precision almost as good as that reported here for the second-order effect.
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The Orbit elements for Syncom M in Table D1 were calculated at the GSFC Tracking and Data

Appendix D

Basic Orhit Data Used in this Report

Systems Directorate from radar and Minitrack observations made during the slow-drift periods

from mid- August 1963 to February 1964.

As an example of the estimation of the ascending equator crossing nearest to epoch, consider
the orbit geometry at epoch (Figure D1): 6 January 1964 at 17.0 hours Universal Time (orbit 2-5).

Table D1

Syncom II Orbital Elements, August 1963 to February 1964

Right Ascen-

Epoch (Universal Time) { Semimajor Inclinati Mean Argu;nent sion of the
< . .. ation 0! A

Orbit (year-mgnth—day- Axis Eccentricity (degrees) Anomaly Perigee Ascending
hour-min-sec) (km) (degrees) (degrees) Node

(degrees)
i-1 63-8-22-6-12-8 42164.58 0.00018 33.083 24,126 26.285 317.569
1-2 63-8-26-17-0 42164.52 0.00016 33.090 190.841 26.099 317.454
1-3 63-8-31-0-0 42166.02 0.00018 33.062 296.125 30.073 317.475
1-4 63-9-5-0-0 42166.39 0.00012 33.064 333.521 357.756 317.362
1-5 63-9-9-0-0 42166.35 0.00015 33.048 326.207 9.077 317.272
1-6 63-9-12-2-0 42166.55 0.00015 33.079 3.657 4.697 317.224
1-7 63-9-17-2-0 42166.70 0.00018 33.043 12.694 0.581 317.165
1-8 63-9-20-2-0 42167.42 0.00018 33.010 359.970 16.282 317.098
1-9 63-9-27-2-0 42167.51 0.00022 33.046 38.922 344.162 316.996
1-10 63-10-1-2-0 42168.88 0.00024 33.039 26.615 0.433 316.944
1-11 63-10-8-2-0 42169.14 0.00020 33.013 42.889 350.866 316.780
1-12 63-10-14-2-0 42169.78 0.00028 32.982 36.727 2.673 316.813
1-13 63-10-22-2-0 42171.51 0.00026 32.993 62.833 344.246 316.603
1-14 63-10-30-0-0 42171.09 0.00028 32,948 29.865 354.548 316.570
1-15 63-11-6-0-0 42172.15 0.00025 32.952 36.699 354.313 316.328
1-16 63-11-12-5-0 42172.51 0.00031 32.920 108.239 3.425 316.308
2-1 63-11-28-1-0 42165.89 0.00005 32.920 222.170 203.901 315.976
2-2 63-12-4-0-0 42167.20 0.00009 32.892 39.435 17.564 315.919
2-3 63-12-10-0-0 42167.18 0.00010 32.881 51.942 10.958 315.877
2-4 63-12-16-17-0 42168.17 0.00007 32.872 300.000 24.505 315.735
2-5 64-1-6-17-0 42168.01 0.00013 32.867 332.997 11.625 315.544
2-6 64-1-9-6-0 42169.90 0.00015 32.857 165.031 16.992 315.469
2-7 64-1-20~21-0 42171.43 0.00012 32.826 29.098 28.842 315.300
2-8 64-1-29-20-0 42171.91 0.00019 32.859 37.956 13.171 315.212
2-9 64-2-5-16-0 42172.89 0.00019 32.800 321.168 36.275 315.075
2-10 64-2-10-19-0 42173.31 0.00014 32.833 32.517 14.553 314.982
2-11 64-2-17-17-0 42174.89 0.00019 32.762 347.774 35.551 314.883
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ORBIT 2-5 (SYNCOM II)
(Projected onto celestial
sphere )

EAST
——

(DIRECTION OF VERNAL EQUINOX)

. - CELESTIAL EQUATOR
| e ——
44.456° to.3135 ¢

|
ASCENDING NODE
PROGRESSION OF SATELLITE IN ORBIT

SATELLITE LOCATION AT EPOCH

Location of Greenwich
at epoch)

Figure D1—A portion of the celestial sphere at the epoch of orbit 2-5.

On 6.0 January 1964, the hour angle of the vernal equinox west of Greenwich (expressed in hours,
with 24 hours = 360 degrees) was

6 hr 58 min 27.484 sec (from the Nautical Almanac) .

On 7.0 January 1964, the hour angle of O was

7 hr 2 min 24.036 sec .

Interpolating, the hour angle of ( on 6 January at 17 hours Universal Time was

0 hr 1 min 15.042 sec, or

0.313 degrees west of Greenwich .

In Figure D1, the orbit angle 27.003 degrees is taken directly as 360 degrees minus the mean
anomaly, because the orbit is nearly circular. The reported period for this orbit was

Tp = 1436.21696 min .

The earth's sidereal rotation period is taken to be

T = 1436.06817 min .

earth

Thus, if the satellite is assumed to traverse orbit 2-5 at a nearly uniform rate, it will reach the
celestial equator at a time when the Greenwich meridian has proceeded eastward from the epoch

15. 378 x 1436.21696,/1436.06817 = 15.380 degrees .
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'I"hus, the estimated geographic longitude of the ascending equator crossing nearest to the epoch
of orbit 2-5 is

Ascending equator crossing longitude = - (44.456 +0.313+15.380)

It

= 60.149 degrees (see Table 1).

The estimated time of this crossing is
15. °
‘1‘50_3/8% = 1.025 hours after the epoch .

The crossing time (Table 1 in text) is thus estimated to be at

6.751 January 1964 (18.025/24 +6.0 January 1964) .
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Appendix E

Derivation of Exact Elliptic Integral of Drift Motion for
a 24-Hour Near-Circular Orbit Satellite: Comparison
of Exact Solution with Approximate Solutions
for Periods Very Close to Synchronous

The differential text equation 33 of 24-hour satellite drift is
analogous to the equation describing the large-angle oscillations
of a mathematical pendulum (see Reference 10), as in Figure E-1.

The equation of angular motion of the mass m under the con-
stant gravity force mg, is

md? (16)

F; mg, sin & qc? = mlf . (E1) i
|
Equation E1 can be rewritten as !
i .
| Fr = mgg siné
£ + (go/l) sin6 = 0 . (E2) ms'o
From the theory developed in Reference 10 (pp. 327-335), Equa- FigUfe E‘—C?nf'igwoﬁ?n °f"
tion E2 has an inteeral a "mathematical pendulum.
t(time from & = 0) = (L/go) Y F(k, ), (E3)

where F(k, ¢) is the elliptic integral of the first kind with argument (or amplitude)

¢ = sin’! <_si:i;ni{/22)

and modulus
k = sin6__/2.

Equation 33 in the text,

¥ + A, sin2y = 0,
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> ]
with maximum libration angle v,, can be put in the form of Equation E2 by the transformation of
the dependent variable

g = 2y (E4)
with the parameter identification
go/l T 24, . (E4a)
Equation E4 implies the identification
k = sinvy,, ¢ = sin’! (siny/sin o) - (E4b)

The pendulum solution (Equation E3), under the transformation E4 and identifications E4a and
E4b, becomes

t (time of drift libration from ¥y = 0) = (1/2A22) 1/2Fl:sin Yo (sin"l siny/sin 70)] . (E5)
F(k, ¢), in its full integral form, is

F = 9
B (1-&2 sin? (}3)1/2 ’ (E6)
0
(where k? = sin? v, sin? ¢ = sin?7/sin? v ) for the drift libration. In particular, when ¢ = 7/2,
then v = »,; %, = 0; and the pendulum-drift libration has completed a quarter-period.

Thus, from Equations E5 and E6, the full period of the long-term drift libration of the 24-hour
satellite ground track about the nearest minor equatorial axis longitude is

/2

] dy
T(Vo) - (8/A22)1/2 (1 -gin? ,}/0 sin? \/j)l/2 : (E7)
0

The adequacy of the Taylor series expansion approximation of the drift motion in the neighborhood
of v,, given in Equation 50, may be testedagainst the exact drift solution implicit in Equation E5.
Table El gives the evaluation of F for arguments within 5 degrees of v, = 60 degrees, using the
integral tables in Reference 11. In Table El, AF is the change in the elliptic integral from the
"stationary" configuration at ¥ = 60 degrees or ¢ = 90 degrees; 4t = (1/2A,,)!/2 AF; A,,was com-

puted from Equation 30a with the following gravity-earth constants and for the inclination of
Syncom II:

R, = 6378.2 km ,

1Y
"

42166 km ,
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Jo2 ~

-1.7x 1076,

33 degrees .

v' gives the drift position as calculated from the first right-hand term of Equation 50 alone [the
(Ot)? term]. v" gives the drift position as calculated from the first two right-hand terms of 50.
The "actual” Syncom II drift in mid-August 1963 began, apparently, at a v, between 48 and 58 de-
grees east of the minor axis. Thus, the 16 orbits chosen for the first drift period all should be
well represented by the (At)?-only theory, within the rms error of the longitude observations.
Similar exact calculations for , = 45, 50, and 55 degrees confirm the adequacy of the (0t)? -
only theory to apply to the second drift-period orbits. They also prove the contention in the sec-
tion on approximations to exact drift solutions (p. 16 ff.) that, for reasonably small excursions
from "synchronism', the convergence of the Taylor series (Equation 50) is adequate if additional
terms are included only when they become of a certain minimum significance to the total drift.

Table E1

Exact and Approximate Drifts of a 24-Hour Satellite from a Stationary Configuration

60° East of the Earth's Minor Equatorial Axis

) " Ot
Y Y Y @ F oF
Y = 60 degrees (degrees) | (degrees) | (degrees) | (degrees) | (rad) (rad) (diyi ig'(;):n )

A,, = 23.2 x 10" ° rad/day? 60.0 60.0 60 90 2.1565 - -
59.0 59.003 59.000 81.7967 1.8730 | 0.2835 41.619
58.0 58.014 58.001 78.3056 1.7564 | 0.4001 58,737
57.0 57.029 56.999 75.5595 1.6671 | 0.4894 71.846
56.0 56.051 56.999 73.1938 1.5923 | 0.5642 82.827
55.0 55.077 54.996 71,0617 1.5265 | 0.6300 92.487
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F(i)

F(k, ¢)

Eos B,

Appendix F

List of Symbols

Driving function causing drift and orbit expansion of a 24-hour satellite in a
"triaxial" earth-gravity field; a constant for a given 24-hour orbit inclination

Instantaneous semimajor axis, and ""momentarily synchronous' semimajor axis, of
orbit of the 24-hour earth satellite. (a_, estimated to within 3 km, is 42166 km)

Major and minor equatorial radii of the "triaxial" earth [Ro = (ao + bo) /2, accord-
ing to definition in Wagner, op. cit.; see footnote, p. 7]

(a-a,) /as ; a nondimensional semimajor axis change for the 24-hour satellite's
orbit, with respect to ""momentarily synchronous" semimajor axis

A small arc length of a space trajectory

Determinable coefficients in drift and orbit-expansion equations 67 and 68

A gravity force per unit mass acting on a 24-hour satellite

Inclination factor in the triaxial driving function A,,

Elliptic integral of the first kind with argument (or amplitude) ¢ and modulus k

Radial acceleration of the earth's gravity field at the earth's surface and at alti-
tude of the "synchronous" satellite

Inclination of orbit of the 24-hour satellite
Spherical harmonic constants (order n, power m )* of the earth's gravity potential

Mean anomaly of the satellite in its orbit: orbit angle (from center of the earth)
from perigee to a point M in the orbit, where M = 2wt/Tp, t being real time since
perigee passage and T, period of the satellite's orbit

A test mass

Mean equatorial radius of the earth (6378.2 km)

*In the literature of spherical harmonics n is often called “degree,” and m “order.” However, in speaking of the order of influence of

the gravitational harmonics, n is generally used. For this reason, the author prefers the nomenclature “order” for n and “power” or
“degree” for m when referring to gravitational harmonics.
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66

Orbital period for a satellite, and '""momentarily synchronous" perioc‘i of a 2:1—
hour satellite (i.e., the earth's sidereal rotation period)

Time of "synchronism' from an arbitrary base time of reckoning T

Real time

Gravity potential of the earth

Argument of perigee in a satellite orbit: orbit angle (from center of the earth)

from ascending node to perigee
Argument () at start of dynamics under consideration

Argument () at a specified location n [except in Appendix C: ( )s; argument
for the simulated trajectory)

d d2 n
—ét—),ﬁ , d—dt(T)-: time differentials
A small argument ( )

Geographic longitude (positive to the east) of the 24-hour satellite, or ascending
equator crossing of the satellite's orbit with respect to longitude of the earth's
minor equatorial axis

Geographic longitude (positive to the east) of ascending equator crossing of the
24-hour satellite's orbit with respect to the earth's minor equatorial axis' longi-
tude location, at start of dynamics under consideration

Argument from ascending node to satellite position for the 24-hour orbit

Geographic longitude, geocentric radius, and geocentric latitude of the 24-hour
satellite position

"Initial" geographic longitude of the satellite, or ascending node of the 24-hour
satellite's orbit at start of dynamics under consideration

Geographic longitude difference between two ""momentarily synchronous' 24-
hour satellite configurations

Earth's gaussian gravity constant (3.986 x 10° km?3/sec ?)
Longitude location of the vernal equinox

Earth's sidereal rotation rate (0.7292115 X 10" * rad/sec)

NASA-Langley, 1965




